Logo del repository
  1. Home
 
Opzioni

On the Steiner property for planar minimizing clusters. The anisotropic case

Franceschi, Valentina
•
Pratelli, Aldo
•
Stefani, Giorgio
2023
  • journal article

Periodico
JOURNAL DE L'ÉCOLE POLYTECHNIQUE. MATHÉMATIQUES
Abstract
- In this paper we discuss the Steiner property for minimal clusters in the plane with an anisotropic double density. This means that we consider the classical isoperimetric problem for clusters, but volume and perimeter are defined by using two densities. In particular, the perimeter density may also depend on the direction of the normal vector. The classical "Steiner property" for the Euclidean case (which corresponds to both densities being equal to 1) says that minimal clusters are made by finitely many C1,gamma arcs, meeting in finitely many "triple points". We can show that this property holds under very weak assumptions on the densities. In the parallel paper [13] we consider the isotropic case, i.e., when the perimeter density does not depend on the direction, which makes most of the construction much simpler. In particular, in the present case the three arcs at triple points do not necessarily meet with three angles of 120 degrees, which is instead what happens in the isotropic case. ReSUMe (Sur la propriete de Steiner pour les clusters minimaux dans le plan. Le cas anisotrope) Dans cet article, nous discutons de la propriete de Steiner pour les clusters minimaux dans le plan avec une double densite anisotrope. Cela signifie que nous considerons le probleme isoperimetrique classique pour les clusters, mais que le volume et le perimetre sont definis a l'aide de deux densites. En particulier, la densite du perimetre peut egalement dependre de la direction du vecteur normal. La << propriete de Steiner >> classique pour le cas euclidien (qui correspond aux deux densites egales a 1) dit que les clusters minimaux sont constitues d'un nombre fini d'arcs C1,gamma, se rencontrant en un nombre fini de << points triples >>. Nous pouvons montrer que cette propriete est valable sous des hypotheses tres faibles sur les densites. Dans l'article parallele [13], nous considerons le cas isotrope, c'est-a-dire lorsque la densite du perimetre ne depend pas de la direction, ce qui rend la plupart des constructions beaucoup plus simples. En particulier, dans le cas present, les trois arcs aux points triples ne se rencontrent pas necessairement avec trois angles de 120 degrees, contrairement a ce qui arrive dans le cas isotrope.
DOI
10.5802/jep.238
WOS
WOS:000993264100002
Archivio
https://hdl.handle.net/20.500.11767/140482
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85161063303
https://arxiv.org/abs/2106.08099
https://ricerca.unityfvg.it/handle/20.500.11767/140482
Diritti
open access
Soggetti
  • Perimeter and volume ...

  • clustering isoperimet...

  • Steiner property

  • anisotropic perimeter...

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback