Logo del repository
  1. Home
 
Opzioni

DADApy: Distance-based analysis of data-manifolds in Python

Glielmo, Aldo
•
Macocco, Iuri
•
Doimo, Diego
altro
Laio, Alessandro
2022
  • journal article

Periodico
PATTERNS
Abstract
DADApy is a Python software package for analyzing and characterizing high-dimensional data manifolds. It provides methods for estimating the intrinsic dimension and the probability density, for performing density-based clustering, and for comparing different distance metrics. We review the main functionalities of the package and exemplify its usage in a synthetic dataset and in a real-world application. DADApy is freely available under the open-source Apache 2.0 license.
DOI
10.1016/j.patter.2022.100589
WOS
WOS:000898561500009
Archivio
https://hdl.handle.net/20.500.11767/131750
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85139846747
https://arxiv.org/abs/2205.03373
https://ricerca.unityfvg.it/handle/20.500.11767/131750
Diritti
metadata only access
Soggetti
  • density estimation

  • density-based cluster...

  • feature selection

  • intrinsic dimension

  • manifold analysis

  • metric learning

  • Settore FIS/03 - Fisi...

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback