Logo del repository
  1. Home
 
Opzioni

Sharp measure contraction property for generalized H-type Carnot groups

Barilari, D.
•
Rizzi, L.
2018
  • journal article

Periodico
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS
Abstract
We prove that H-type Carnot groups of rank k and dimension n satisfy the MCP(K, N) if and only if K ≤ 0 and N ≥ k + 3(n − k). The latter integer coincides with the geodesic dimension of the Carnot group. The same result holds true for the larger class of generalized H-type Carnot groups introduced in this paper, and for which we compute explicitly the optimal synthesis. This constitutes the largest class of Carnot groups for which the curvature exponent coincides with the geodesic dimension. We stress that generalized H-type Carnot groups have step 2, include all corank 1 groups and, in general, admit abnormal minimizing curves. As a corollary, we prove the absolute continuity of the Wasserstein geodesics for the quadratic cost on all generalized H-type Carnot groups.
DOI
10.1142/S021919971750081X
WOS
WOS:000442946100008
Archivio
http://hdl.handle.net/20.500.11767/128684
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85034232339
http://arxiv.org/abs/1702.04401v3
https://ricerca.unityfvg.it/handle/20.500.11767/128684
Diritti
metadata only access
Soggetti
  • Carnot groups

  • Geodesic dimension

  • Measure contraction p...

  • Optimal transport

  • Sub-Riemannian geomet...

  • Mathematics - Metric ...

  • Mathematics - Metric ...

  • Mathematics - Analysi...

  • Mathematics - Differe...

  • Mathematics - Optimiz...

  • 53C17, 53C22, 35R03, ...

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback