Logo del repository
  1. Home
 
Opzioni

New formulas for the Laplacian of distance functions and applications

Cavalletti, F.
•
Mondino, A.
2020
  • journal article

Periodico
ANALYSIS & PDE
Abstract
The goal of the paper is to prove an exact representation formula for the Laplacian of the distance (and more generally for an arbitrary 1-Lipschitz function) in the framework of metric measure spaces satisfying Ricci curvature lower bounds in a synthetic sense (more precisely in essentially nonbranching MCP.K; N/-spaces). Such a representation formula makes apparent the classical upper bounds together with lower bounds and a precise description of the singular part. The exact representation formula for the Laplacian of a general 1-Lipschitz function holds also (and seems new) in a general complete Riemannian manifold.
DOI
10.2140/apde.2020.13.2091
WOS
WOS:000591928900003
Archivio
http://hdl.handle.net/20.500.11767/126749
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85097774513
https://arxiv.org/abs/1803.09687
https://ricerca.unityfvg.it/handle/20.500.11767/126749
Diritti
metadata only access
Soggetti
  • distance function

  • Laplacian comparison

  • optimal transport

  • Ricci curvature

  • Settore MAT/05 - Anal...

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback