Logo del repository
  1. Home
 
Opzioni

Heat transfer in drop-laden turbulence

Mangani F.
•
Roccon A.
•
Zonta F.
•
Soldati A.
2024
  • journal article

Periodico
JOURNAL OF FLUID MECHANICS
Abstract
Heat transfer by large deformable drops in a turbulent flow is a complex and rich-in-physics system, in which drop deformation, breakage and coalescence influence the transport of heat. We study this problem by coupling direct numerical simulation (DNS) of turbulence with a phase-field method for the interface description. Simulations are run at fixed-shear Reynolds and Weber numbers. To evaluate the influence of microscopic flow properties, like momentum/thermal diffusivity, on macroscopic flow properties, like mean temperature or heat transfer rates, we consider four different values of the Prandtl number, which is the momentum to thermal diffusivity ratio:, and. The drop volume fraction is for all cases. Drops are initially warmer than the turbulent carrier fluid and release heat at different rates depending on the value of, but also on their size and on their own dynamics (topology, breakage, drop-drop interaction). Computing the time behaviour of the drops and carrier fluid average temperatures, we clearly show that an increase of slows down the heat transfer process. We explain our results by a simplified phenomenological model: we show that the time behaviour of the drop average temperature is self-similar, and a universal behaviour can be found upon rescaling by. Accordingly, the heat transfer coefficient (respectively its dimensionless counterpart, the Nusselt number) scales as (respectively) at the beginning of the simulation, and tends to (respectively) at later times. These different scalings can be explained via the boundary layer theory and are consistent with previous theoretical/numerical predictions.
DOI
10.1017/jfm.2023.1002
Archivio
https://hdl.handle.net/11390/1271065
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85182978717
https://ricerca.unityfvg.it/handle/11390/1271065
Diritti
open access
Soggetti
  • breakup/coalescence

  • drop

  • turbulence simulation...

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback