Logo del repository
  1. Home
 
Opzioni

Planck 2015 results: XX. Constraints on inflation

Ade, P. A. R.
•
Aghanim, N.
•
Arnaud, M.
altro
Zonca, A.
2016
  • journal article

Periodico
ASTRONOMY & ASTROPHYSICS
Abstract
We present the implications for cosmic inflation of the Planck measurements of the cosmic microwave background (CMB) anisotropies in both temperature and polarization based on the full Planck survey, which includes more than twice the integration time of the nominal survey used for the 2013 release papers. The Planck full mission temperature data and a first release of polarization data on large angular scales measure the spectral index of curvature perturbations to be ns= 0.968 ± 0.006 and tightly constrain its scale dependence to dns/dlnk =-0.003 ± 0.007 when combined with the Planck lensing likelihood. When the Planck high-â"" polarization data are included, the results are consistent and uncertainties are further reduced. The upper bound on the tensor-to-scalar ratio is r0.002< 0.11 (95% CL). This upper limit is consistent with the B-mode polarization constraint r< 0.12 (95% CL) obtained from a joint analysis of the BICEP2/Keck Array and Planck data. These results imply that V(Ï ) â Ï 2and natural inflation are now disfavoured compared to models predicting a smaller tensor-to-scalar ratio, such as R2inflation. We search for several physically motivated deviations from a simple power-law spectrum of curvature perturbations, including those motivated by a reconstruction of the inflaton potential not relying on the slow-roll approximation. We find that such models are not preferred, either according to a Bayesian model comparison or according to a frequentist simulation-based analysis. Three independent methods reconstructing the primordial power spectrum consistently recover a featureless and smooth \hbox$\cal P-\calR(k)$ over the range of scales 0.008 Mpc-1â⠰2k â⠰20.1 Mpc-1. At large scales, each method finds deviations from a power law, connected to a deficit at multipoles â"" â⠰ 20-40 in the temperature power spectrum, but at an uncompelling statistical significance owing to the large cosmic variance present at these multipoles. By combining power spectrum and non-Gaussianity bounds, we constrain models with generalized Lagrangians, including Galileon models and axion monodromy models. The Planck data are consistent with adiabatic primordial perturbations, and the estimated values for the parameters of the base Î cold dark matter (Î CDM) model are not significantly altered when more general initial conditions are admitted. In correlated mixed adiabatic and isocurvature models, the 95% CL upper bound for the non-adiabatic contribution to the observed CMB temperature variance is | αnon-adi| < 1.9%, 4.0%, and 2.9% for CDM, neutrino density, and neutrino velocity isocurvature modes, respectively. We have tested inflationary models producing an anisotropic modulation of the primordial curvature power spectrum findingthat the dipolar modulation in the CMB temperature field induced by a CDM isocurvature perturbation is not preferred at a statistically significant level. We also establish tight constraints on a possible quadrupolar modulation of the curvature perturbation. These results are consistent with the Planck 2013 analysis based on the nominal mission data and further constrain slow-roll single-field inflationary models, as expected from the increased precision of Planck data using the full set of observations.
DOI
10.1051/0004-6361/201525898
WOS
WOS:000385832200018
Archivio
http://hdl.handle.net/20.500.11767/68953
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84989873980
http://www.edpsciences.org/journal/index.cfm?edpsname=aa
https://arxiv.org/abs/1502.02114
Diritti
metadata only access
Soggetti
  • Cosmic background rad...

  • Cosmology: theory

  • Early Universe

  • Inflation

  • Astronomy and Astroph...

  • Space and Planetary S...

  • Settore FIS/05 - Astr...

Scopus© citazioni
1180
Data di acquisizione
Jun 2, 2022
Vedi dettagli
Web of Science© citazioni
730
Data di acquisizione
Mar 24, 2024
Visualizzazioni
2
Data di acquisizione
Jun 8, 2022
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback