Logo del repository
  1. Home
 
Opzioni

Symbolic regression of discontinuous and multivariate functions by Hyper-Volume Error Separation (HVES)

FILLON, CYRIL
•
BARTOLI, Alberto
2007
  • conference object

Abstract
Symbolic regression is aimed at discovering mathematical expressions, in symbolic form, that fit a given sample of data points. While genetic programming (GP) constitutes a powerful tool for solving this class of problems, its effectiveness is still severely limited when the data sample requires different expressions in different regions of the input space - i.e., when the approximating function should be discontinuous. In this paper we present a new GP-based approach for symbolic regression of discontinuous functions in multivariate data-sets. We identify the portions of the input space that require different approximating functions by means of a new algorithm that we call hyper-volume error separation (HVES). To this end we run a preliminary GP evolution and partition the input space based on the error exhibited by the best individual across the data-set. Then we partition the data-set based on the partition of the input space and use each such partition for driving an independent, preliminary GP evolution. The populations resulting from such preliminary evolutions are finally merged and evolved again. We compared our approach to the standard GP search and to a GP search for discontinuous functions in univariate data-sets. Our results show that coupling HVES with GP is an effective approach and provides significant accuracy improvements while requiring less computational resources.
DOI
10.1109/CEC.2007.4424450
Archivio
http://hdl.handle.net/11368/1744059
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-78650487055
Diritti
metadata only access
Soggetti
  • Genetic Programming

  • HVES algorithm

Web of Science© citazioni
6
Data di acquisizione
Mar 26, 2024
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback