Logo del repository
  1. Home
 
Opzioni

Token-Based Adaptive Time-Series Prediction by Ensembling Linear and Non-linear Estimators: A Machine Learning Approach for Predictive Analytics on big Stock Data

Morris, Kyle J.
•
Egan, Sean D.
•
Linsangan, Jorell L.
altro
Hoi, Calvin S. H.
2018
  • conference object

Abstract
Token-Based Adaptive Time-Series Prediction by Ensembling Linear and Non-linear Estimators: A Machine Learning Approach for Predictive Analytics on big Stock Data
DOI
10.1109/ICMLA.2018.00242
WOS
WOS:000463034400234
Archivio
http://hdl.handle.net/11368/2939102
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85062213716
https://ieeexplore.ieee.org/document/8614267
Diritti
closed access
FVG url
https://arts.units.it/request-item?handle=11368/2939102
Soggetti
  • Ensemble learning

  • Kalman filter

  • Linear data

  • Linear regression

  • Long short term memor...

  • Nonlinear data

  • Stock prediction

  • Time-series analysi

  • Artificial Intelligen...

  • Computer Networks and...

  • Computer Science Appl...

  • 1707

  • Safety, Risk, Reliabi...

  • Signal Processing

  • Decision Sciences (mi...

Scopus© citazioni
36
Data di acquisizione
Jun 14, 2022
Vedi dettagli
Web of Science© citazioni
54
Data di acquisizione
Mar 26, 2024
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback