Logo del repository
  1. Home
 
Opzioni

A shock-capturing finite volume scheme to solve 1D multi-layer shallow water equations

BOSA, Silvia
•
PETTI, Marco
2012
  • conference object

Abstract
The multi-layer shallow water approach can be regarded as a development of De Saint Venant equations in the direction of a more accurate description of the physical problem, keeping as far as possible the efficiency of classical De Saint Venant numerical models. From this point of view, in the present paper, the one dimensional multi-layer De Saint Venant equations are briefly developed, marking the fact that the stresses due to the presence of neighboring layers can be treated as the effect of a virtual topography. In this way, continuity and momentum equation on each layer furnish a system of equations that is very similar to classic single-layer De Saint Venant equations. This similitude suggests the possibility to solve the resulting differential equations by means of the techniques originally developed for the solution of De Saint Venant equations. Following this idea, the 1D multi-layer De Saint Venant equations are solved numerically by means of a shock-capturing finite volume technique applied to each layer separately. The resulting numerical scheme is applied to some benchmark test, and the results are presented and discussed.
Archivio
http://hdl.handle.net/11390/882294
Diritti
metadata only access
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback