Logo del repository
  1. Home
 
Opzioni

The 700 ks Chandra Spiderweb Field

P. Tozzi
•
R. Gilli
•
A. Liu
altro
H. J. A. R??ttgering
2022
  • journal article

Periodico
ASTRONOMY & ASTROPHYSICS
Abstract
Aims: We present the X-ray imaging and spectral analysis of the diffuse emission around the radio galaxy J1140-2629 (the Spiderweb galaxy) at z = 2.16 and of its nuclear emission, based on a deep (700 ks) Chandra observation. Methods: We obtained a robust characterization of the unresolved nuclear emission, and carefully computed the contamination in the surrounding regions due to the wings of the instrument point spread function. Then, we quantified the extended emission within a radius of 12 arcsec. We used the Jansky Very Large Array radio image to identify the regions overlapping the jets, and performed X-ray spectral analysis separately in the jet regions and in the complementary area. Results: We find that the Spiderweb galaxy hosts a mildly absorbed quasar, showing a modest yet significant spectral and flux variability on a timescale of ∼1 year (observed frame). We find that the emission in the jet regions is well described by a power law with a spectral index of Γ ∼ 2 − 2.5, and it is consistent with inverse-Compton upscattering of the cosmic microwave background photons by the relativistic electrons. We also find a roughly symmetric, diffuse emission within a radius of ∼100 kpc centered on the Spiderweb galaxy. This emission, which is not associated with the jets, is significantly softer and consistent with thermal bremsstrahlung from a hot intracluster medium (ICM) with a temperature of kT = 2.0−0.4+0.7 keV, and a metallicity of Z < 1.6 Z⊙ at 1σ c.l. The average electron density within 100 kpc is ne = (1.51 ± 0.24 ± 0.14) × 10−2 cm−3, corresponding to an upper limit for the total ICM mass of ≤(1.76 ± 0.30 ± 0.17) × 1012 M⊙ (where error bars are 1σ statistical and systematic, respectively). The rest-frame luminosity L0.5 − 10 keV = (2.0 ± 0.5) × 1044 erg s−1 is about a factor of 2 higher than the extrapolated L − T relation for massive clusters, but still consistent within the scatter. If we apply hydrostatic equilibrium to the ICM, we measure a total gravitational mass M(<100 kpc) = (1.5−0.3+0.5) × 1013 M⊙ and, extrapolating at larger radii, we estimate a total mass M500 = (3.2−0.6+1.1) × 1013 M⊙ within a radius of r500 = (220 ± 30) kpc. Conclusions: We conclude that the Spiderweb protocluster shows significant diffuse emission within a radius of 12 arcsec, whose major contribution is provided by inverse-Compton scattering associated with the radio jets. Outside the jet regions, we also identified thermal emission within a radius of ∼100 kpc, revealing the presence of hot, diffuse baryons that may represent the embryonic virialized halo of the forming cluster.
DOI
10.1051/0004-6361/202244337
WOS
WOS:000886664800006
Archivio
https://hdl.handle.net/11368/3038408
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85145254205
https://www.aanda.org/articles/aa/full_html/2022/11/aa44337-22/aa44337-22
Diritti
open access
license:creative commons
license uri:http://creativecommons.org/licenses/by/4.0/
FVG url
https://arts.units.it/bitstream/11368/3038408/1/PUB.PDF
Soggetti
  • galaxies clusters gen...

  • galaxies clusters int...

  • X-rays galaxies clust...

  • Astrophysic

  • Astrophysics of Galax...

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback