Logo del repository
  1. Home
 
Opzioni

SBV-like regularity for Hamilton-Jacobi equations with a convex Hamiltonian

Bianchini, S.
•
Tonon, D.
2012
  • journal article

Periodico
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
Abstract
In this paper we consider a viscosity solution u of the Hamilton-Jacobi equation partial derivative(t)u + H(D(x)u) = 0 in Omega subset of [0,T] x R-n. where H is smooth and convex. We prove that when d(t,center dot) := H-p(D(x)u(t,center dot)), H-p := del H is BV for all t epsilon [0, T] and suitable hypotheses on the Lagrangian L hold, the Radon measure divd(t,center dot) can have Cantor part only for a countable number of t's in [0,T]. This result extends a result of Robyr for genuinely nonlinear scalar balance laws and a result of Bianchini, De Lellis and Robyr for uniformly convex Hamiltonians.
DOI
10.1016/j.jmaa.2012.02.017
WOS
WOS:000301682000017
Archivio
http://hdl.handle.net/20.500.11767/13909
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84857917758
Diritti
open access
Soggetti
  • SBV regularity Hamilt...

  • Settore MAT/05 - Anal...

Scopus© citazioni
4
Data di acquisizione
Jun 2, 2022
Vedi dettagli
Web of Science© citazioni
2
Data di acquisizione
Mar 24, 2024
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback