Logo del repository
  1. Home
 
Opzioni

On asymptotic stability of ground states of NLS with a finite bands periodic potential in 1D

CUCCAGNA, SCIPIO
•
Nicola Visciglia
2011
  • journal article

Periodico
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY
Abstract
We consider a nonlinear Schrödinger equation $\displaystyle iu_{t} -h_{0}u + \beta ( \vert u\vert^{2} )u=0 , (t,x)\in \mathbb{R}\times \mathbb{R}, $ with $ h_{0}= -\frac{d^{2}}{dx^{2}} +P(x)$ a Schrödinger operator with finitely many spectral bands. We assume the existence of an orbitally stable family of ground states. Exploiting dispersive estimates in Cuccagna (2008), Cuccagna and Visciglia (2009), and following the argument in Cuccagna (to appear) we prove that under appropriate hypotheses the ground states are asymptotically stable.
DOI
10.1090/S0002-9947-2010-05046-9
WOS
WOS:000290511300004
Archivio
http://hdl.handle.net/11368/2310319
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-79951841316
Diritti
metadata only access
Soggetti
  • Nonlinear Schrödinge...

  • Periodic potential

Scopus© citazioni
3
Data di acquisizione
Jun 14, 2022
Vedi dettagli
Web of Science© citazioni
3
Data di acquisizione
Feb 4, 2024
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback