Logo del repository
  1. Home
 
Opzioni

Changes of soil carbon dioxide, methane, and nitrous oxide fluxes in relation to land use/cover management

Kooch, Y
•
Moghimian, N
•
Bayranvand, M
•
ALBERTI, Giorgio
2016
  • journal article

Periodico
ENVIRONMENTAL MONITORING AND ASSESSMENT
Abstract
Conversions of land use/cover are associated with changes in soil properties and biogeochemical cycling, with implications for carbon (C), nitrogen (N), and trace gas fluxes. In an attempt to provide a comprehensive evaluation of the significance of different land uses (Alnus subcordata plantation, Taxodium distichum plantation, agriculture, and deforested areas) on soil features and on the dynamics of greenhouse gas (GHG) fluxes at local scale, this study was carried out in Mazandaran province, northern Iran. Sixteen samples per land use, from the top 10 cm of soil, were taken, from which bulk density, texture, water content, pH, organic C, total N, microbial biomass of C and N, and earthworm density/biomass were determined. In addition, the seasonal changes in the fluxes of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) were monitored over a year. Our results indicated that the different land uses were different in terms of soil properties and GHG fluxes. Even though the amount of the GHG varied widely during the year, the highest CO2 and CH4 fluxes (0.32 mg CO2 m−2 day−1 and 0.11 mg CH4 m−2 day−1, respectively) were recorded in the deforested areas. N2O flux was higher in Alnus plantation (0.18 mg N2O m−2 day−1) and deforested areas (0.17 mg N2O m−2 day−1) than at agriculture site (0.05 mg N2O m−2 day−1) and Taxodium plantation (0.03 mg N2O m−2 day−1). This study demonstrated strong impacts of land use change on soil-atmosphere trace gas exchanges and provides useful observational constraints for top-down and bottom-up biogeochemistry models.
DOI
10.1007/s10661-016-5342-z
WOS
WOS:000376684900030
Archivio
http://hdl.handle.net/11390/1082530
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84969902412
Diritti
closed access
Scopus© citazioni
11
Data di acquisizione
Jun 14, 2022
Vedi dettagli
Web of Science© citazioni
10
Data di acquisizione
Mar 24, 2024
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback