In this paper we consider the stability issue for the in-verse problem of determining an unknown inclusion contained in an elastic body by all the pairs of measurements of displacement and trac-tion taken at the boundary of the body. Both the body and the inclusion are made by inhomogeneous linearly elastic isotropic material. Under mild a priori assumptions about the smoothness of the inclusion and the regularity of the coefficients, we show that the logarithmic stability estimate proved in [3] in the case of piecewise constant coefficients continues to hold in the inhomogeneous case. We introduce new arguments which allow to simplify some technical aspects of the proof given in [3].