Logo del repository
  1. Home
 
Opzioni

A one-dimensional prescribed curvature equation modeling the corneal shape

Isabel Coelho
•
CORSATO, CHIARA
•
OMARI, PIERPAOLO
2014
  • journal article

Periodico
BOUNDARY VALUE PROBLEMS
Abstract
We prove existence, uniqueness and stability of solutions of the prescribed curvature problem \begin{equation*} \begin{cases} \bigl({u'}/{\sqrt{1 + u'^2}}\bigr)' = au -{b}/{\sqrt{1 + u'^2}} \quad \text{in }[0,1]\\ u'(0)=u(1)=0, \end{cases} \end{equation*} for any given $a>0$ and $b>0$. We also develop a linear monotone iterative scheme for approximating the solution. This equation has been proposed as a model of the corneal shape in the recent paper \cite{OkPl}, where a simplified version obtained by partial linearization has been investigated.
DOI
10.1186/1687-2770-2014-127
WOS
WOS:000347389400006
Archivio
http://hdl.handle.net/11368/2776925
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84901424159
Diritti
metadata only access
Soggetti
  • mean curvature equati...

  • mixed boundary condit...

  • positive solution

  • existence

  • uniquene

  • stability

  • monotone approximatio...

  • lower and upper solut...

Web of Science© citazioni
11
Data di acquisizione
Mar 24, 2024
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback