Let $G_{n}$ be a sequence of open subsets of a given open and bounded
$\Omega\subset\mathbb{R}^{N}$. We study the asymptotic behaviour
of the solutions of parabolic equations $u_{n}'+Au_{n}=f_{n}\:\textrm{on}\: G_{n}$.
Assuming that the right-hand sides $f_{n}$ and the initial conditions
converge in a proper way we find the form of the limit problem without
any additional hypothesis on $G_{n}$. Our method is based on the
notion of elliptic $\gamma^{A}$-convergence.