We prove the existence of steady space quasi-periodic stream functions, solutions for the Euler equation in a vorticity-stream function formulation in the two dimensional channel Rx[-1,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {R}}}\times [-1,1]$$\end{document}. These solutions bifurcate from a prescribed shear equilibrium near the Couette flow, whose profile induces finitely many modes of oscillations in the horizontal direction for the linearized problem. Using a Nash-Moser implicit function iterative scheme, near such equilibrium we construct small amplitude, space reversible stream functions, slightly deforming the linear solutions and retaining the horizontal quasi-periodic structure. These solutions exist for most values of the parameters characterizing the shear equilibrium. As a by-product, the streamline