Logo del repository
  1. Home
 
Opzioni

Predicting and characterizing selective multiple drug treatments for metabolic diseases and cancer.

Facchetti G
•
Zampieri M
•
Altafini, Claudio
2012
  • journal article

Periodico
BMC SYSTEMS BIOLOGY
Abstract
Background: In the field of drug discovery, assessing the potential of multidrug therapies is a difficult task because of the combinatorial complexity (both theoretical and experimental) and because of the requirements on the selectivity of the therapy. To cope with this problem, we have developed a novel method for the systematic in silico investigation of synergistic effects of currently available drugs on genome-scale metabolic networks. The algorithm finds the optimal combination of drugs which guarantees the inhibition of an objective function, while minimizing the side effect on the overall network. Results: Two different applications are considered: finding drug synergisms for human metabolic diseases (like diabetes, obesity and hypertension) and finding antitumoral drug combinations with minimal side effect on the normal human metabolism.The results we obtain are consistent with some of the available therapeutic indications and predict some new multiple drug treatments.A cluster analysis on all possible interactions among the currently available drugs indicates a limited variety on the metabolic targets for the approved drugs. Conclusion: The in silico prediction of drug synergism can represent an important tool for the repurposing of drug in a realistic perspective which considers also the selectivty of the therapy. Moreover, for a more profitable exploitation of drug-drug interactions, also drugs which show a too low efficacy but which have a non-common mechanism of action, can be reconsider as potential ingredients of new multicompound therapeutic indications.Needless to say the clues provided by a computational study like ours need in any case to be thoroughly evaluated experimentally.
DOI
10.1186/1752-0509-6-115
WOS
WOS:000322045000001
Archivio
http://hdl.handle.net/20.500.11767/30003
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84865425410
Diritti
open access
Soggetti
  • Metabolic Network

  • Flux Balance Analysis...

Scopus© citazioni
23
Data di acquisizione
Jun 7, 2022
Vedi dettagli
Web of Science© citazioni
23
Data di acquisizione
Mar 18, 2024
Visualizzazioni
1
Data di acquisizione
Jun 8, 2022
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback