Logo del repository
  1. Home
 
Opzioni

Ultrafast dynamics in (TaSe4)2I triggered by valence and core-level excitation

Bronsch, Wibke
•
Tuniz, Manuel
•
Crupi, Giuseppe
altro
Cilento, Federico
2022
  • journal article

Periodico
FARADAY DISCUSSIONS
Abstract
Dimensionality plays a key role in the emergence of ordered phases, such as charge density-waves (CDW), which can couple to, and modulate, the topological properties of matter. In this work, we study the out-of-equilibrium dynamics of the paradigmatic quasi-one-dimensional material (TaSe4)2I, which exhibits a transition into an incommensurate CDW phase when cooled to just below room temperature, namely at TCDW = 263 K. We make use of both optical laser and free-electron laser (FEL) based time-resolved spectroscopies in order to study the effect of a selective excitation on the normal-state and on the CDW phases by probing the near-infrared/visible optical properties both along and perpendicularly to the direction of the CDW, where the system is metallic and insulating, respectively. Excitation of the core-levels by ultrashort X-ray FEL pulses at 47 eV and 119 eV induces reflectivity transients resembling those recorded when only exciting the valence band of the compound - by near-infrared pulses at 1.55 eV - in the case of the insulating sub-system. Conversely, the metallic sub-system displays relaxation dynamics which depend on the energy of photo-excitation. Moreover, excitation of the CDW amplitude mode is recorded only for excitation at a low-photon-energy. This fact suggests that the coupling of light to ordered states of matter can predominantly be achieved when directly injecting delocalized carriers in the valence band, rather than localized excitations in the core levels. Complementing this, table-top experiments allow us to prove the quasi-unidirectional nature of the CDW phase in (TaSe4)2I, whose fingerprints are detected along its c-axis only. Our results provide new insights into the symmetry of the ordered phase of (TaSe4)2I perturbed by a selective excitation, and suggest a novel approach based on complementary table-top and FEL spectroscopies for the study of complex materials.
DOI
10.1039/d2fd00019a
WOS
WOS:000810640500001
Archivio
https://hdl.handle.net/11368/3041444
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85132242058
https://pubs.rsc.org/en/content/articlelanding/2022/FD/D2FD00019A
Diritti
open access
license:copyright editore
license:copyright editore
license uri:iris.pri02
license uri:iris.pri02
FVG url
https://arts.units.it/request-item?handle=11368/3041444
Soggetti
  • Ultrafast dynamic

  • charge-density wave

  • table-top and FEL exc...

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback