Logo del repository
  1. Home
 
Opzioni

Heterogeneity of human adaptations to bed rest and hypoxia: A retrospective analysis within the skeletal muscle oxidative function

Salvadego D.
•
Grassi B.
•
Keramidas M. E.
altro
Mekjavic I. B.
2021
  • journal article

Periodico
AMERICAN JOURNAL OF PHYSIOLOGY. REGULATORY, INTEGRATIVE AND COMPARATIVE PHYSIOLOGY
Abstract
This retrospective study was designed to analyze the interindividual variability in the responses of different variables characterizing the skeletal muscle oxidative function to normoxic (N-BR) and hypoxic (H-BR) bed rests and to a hypoxic ambulatory confinement (H-AMB) of 10 and 21 days. We also assessed whether and how the addition of hypoxia to bed rest might influence the heterogeneity of the responses. In vivo measurements of O2 uptake and muscle fractional O2 extraction were carried out during an incremental one-leg knee-extension exercise. Mitochondrial respiration was assessed in permeabilized muscle fibers. A total of 17 subjects were included in this analysis. This analysis revealed a similar variability among subjects in the alterations induced by N-BR and H-BR both in peak O2 uptake (SD: 4.1% and 3.3% after 10 days; 4.5% and 8.1% after 21 days, respectively) and peak muscle fractional O2 extraction (SD: 5.9% and 7.3% after 10 days; 6.5% and 7.3% after 21 days), independently from the duration of the exposure. The individual changes measured in these variables were significantly related (r = 0.66, P = 0.004 after N-BR; r = 0.61, P = 0.009 after H-BR). Mitochondrial respiration showed a large variability of response after both N-BR (SD: 25.0% and 15.7% after 10 and 21 days) and H-BR (SD: 13.0% and 19.8% after 10 and 21 days); no correlation was found between N-BR and HBR changes. When added to bed rest, hypoxia altered the individual adaptations within the mitochondria but not those intrinsic to the muscle oxidative function in vivo, both after the short- and medium-term exposures.
DOI
10.1152/ajpregu.00053.2021
WOS
WOS:000722419600001
Archivio
http://hdl.handle.net/11390/1218030
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85120772746
https://ricerca.unityfvg.it/handle/11390/1218030
Diritti
metadata only access
Soggetti
  • hypoxia

  • mitochondrial respira...

  • oxidative metabolism

  • physical inactivity

  • planetary habitats

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback