Logo del repository
  1. Home
 
Opzioni

Hierarchical gaussian filtering of sufficient statistic time series for active inference

Mathys C.
•
Weber L.
2020
  • conference object

Abstract
Active inference relies on state-space models to describe the environments that agents sample with their actions. These actions lead to state changes intended to minimize future surprise. We show that surprise minimization relying on Bayesian inference can be achieved by filtering of the sufficient statistic time series of exponential family input distributions, and we propose the hierarchical Gaussian filter (HGF) as an appropriate, efficient, and scalable tool for active inference agents to achieve this.
DOI
10.1007/978-3-030-64919-7_7
WOS
WOS:001446861900007
Archivio
http://hdl.handle.net/20.500.11767/122711
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85098288521
Diritti
metadata only access
Soggetti
  • Active inference

  • Exponential families

  • Hierarchical Gaussian...

  • Message passing

  • Precision-weighted pr...

  • Settore M-PSI/02 - Ps...

Scopus© citazioni
1
Data di acquisizione
Jun 7, 2022
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback