Logo del repository
  1. Home
 
Opzioni

Exciton condensation in strongly correlated quantum spin Hall insulators

Amaricci, A.
•
Mazza, G.
•
Capone, M.
•
Fabrizio, M.
2023
  • journal article

Periodico
PHYSICAL REVIEW. B
Abstract
Time-reversal symmetric topological insulators are generically robust with respect to weak local interaction unless symmetry-breaking transitions take place. Using dynamical mean-field theory, we solve an interacting model of quantum spin Hall insulators and show the existence at intermediate coupling of a symmetry-breaking transition to a nontopological insulator characterized by exciton condensation. This transition is of first order. For a larger interaction strength, the insulator evolves into a Mott one. The transition is continuous if magnetic order is prevented, and notably, for any finite Hund's exchange, it progresses through a Mott localization before the condensate coherence is lost. We show that the correlated excitonic state corresponds to a magneto-electric insulator, which allows for direct experimental probing. Finally, we discuss the fate of the helical edge modes across the excitonic transition.
DOI
10.1103/PhysRevB.107.115117
WOS
WOS:000962465800003
Archivio
https://hdl.handle.net/20.500.11767/133574
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85150908236
Diritti
open access
Soggetti
  • Settore FIS/03 - Fisi...

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback