Logo del repository
  1. Home
 
Opzioni

Analogue space-time based on 2-component bose - Einstein condensates

Weinfurtner S
•
Visser M.
•
Liberati, Stefano
2007
  • conference object

Abstract
Analogue space-times are powerful models for probing the fundamental physical aspects of geometry - while one is most typically interested in ultimately reproducing the pseudo-Riemannian geometries of interest in general relativity and cosmology, analogue models can also provide useful physical probes of more general geometries such as pseudo-Finsler space-times. In this chapter we shall see how a 2-component Bose-Einstein condensate can be used to model a specific class of pseudo-Finsler geometries, and after suitable tuning of parameters, both bi-metric pseudo-Riemannian geometries and standard single metric pseudo-Riemannian geometries, while independently allowing the quasi-particle excitations to exhibit a "mass". Furthermore, when extrapolated to extremely high energy the quasi-particles eventually leave the phononic regime and begin to act like free bosons. Thus this analogue space-time exhibits an analogue of the "Lorentz violation" that is now commonly believed to occur at or near the Planck scale defined by the interplay between quantum physics and gravitational physics. In the 2-component Bose-Einstein analogue space-time we will show that the mass generating mechanism for the quasi-particles is related to the so-called "naturalness problem". In short the analogue space-time based on 2-component Bose-Einstein condensates exhibits a very rich mathematical and physical structure that can be used to investigate many issues of interest to the high-energy physics, cosmology, and general relativity communities
DOI
10.1007/3-540-70859-6_6
WOS
WOS:000246519900006
Archivio
http://hdl.handle.net/20.500.11767/15276
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-34247176292
Diritti
closed access
license:non specificato
Soggetti
  • Settore FIS/05 - Astr...

Web of Science© citazioni
7
Data di acquisizione
Mar 28, 2024
Visualizzazioni
1
Data di acquisizione
Jun 8, 2022
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback