Logo del repository
  1. Home
 
Opzioni

Energy calibration through X-ray absorption of the DECAL sensor, a monolithic active pixel sensor prototype for digital electromagnetic calorimetry and tracking

GONELLA, Laura
2023
  • journal article

Periodico
FRONTIERS IN PHYSICS
Abstract
In calorimetry, the predominant detection principle is to measure the energy deposited by particles within a shower initiated by an incident particle. An alternative concept is a sampling calorimeter where the highly granular active layers rather measure the number of secondary particles in the shower by detecting hits through binary readout similar to sensors for tracking applications. In this context, the DECAL sensor is a fully-depleted monolithic active pixel sensor prototype with reconfigurable readout for digital electromagnetic calorimetry and tracking. Its 64 × 64 pixels with a pitch of 55 μm are fabricated in a modified TowerJazz 180 nm CMOS imaging process using a 25 μm epitaxial silicon layer. The readout at 40 MHz is configurable in counting hits in the sensor grouped as either 64 strips or 4 pads. In this article, we present the energy calibration of this sensor using a gamma source of americium-241 as well as X-ray fluorescence at various wavelengths. The uniformity of the pixel responses is shown, allowing the summation of counts across all pixels. By that, two standalone energy calibration methods are developed that describe the X-ray absorption in the energy range of 4–60 keV and agree with each other. The signal pulse height is related to the absorbed photon energy with a 5.54 ± 0.37 mV/keV scale which corresponds to a conversion gain of cg = 19.95 ± 1.32 μV/e−. The relative energy resolution for photon absorption is found to be σE/E = 11.8 ± 3.0%. The absolute counts observed with the DECAL sensor agree with expectations and substantiate the assumption of a fully depleted epitaxial layer. The understanding of the photon absorption is an important input for further development of the sensor towards a multi-layer calorimeter.
DOI
10.3389/fphy.2023.1231336
WOS
WOS:001093773700001
Archivio
https://hdl.handle.net/11368/3100650
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85175544635
Diritti
open access
license:creative commons
license uri:http://creativecommons.org/licenses/by/4.0/
FVG url
https://arts.units.it/bitstream/11368/3100650/1/fphy-11-1231336.pdf
Soggetti
  • complementary metal o...

  • depleted monolithic a...

  • digital calorimetry

  • ECAL

  • energy calibration

  • particle physic

  • tracking

  • X-ray fluorescence

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback