Logo del repository
  1. Home
 
Opzioni

Dynamical Systems from Uniform Completions

Garibay, F.
•
Sanchis, M.
•
Vera, R.
2001
  • Controlled Vocabulary...

Abstract
Let $\left(X,\mathcal{U}\right)$ be a compact uniform space, $\sum$ the set of natural numbers or the integers, $\varphi\;:\; X\;\longrightarrow\; X$ a continuous function or a homeomorphism. Given the dynamical system $\left(X,\varphi,\sum\right)$, an extension $\left(K,\widehat{\varphi,}\sum\right)$, can be constructed by letting K be the uniform completion of $\left(X,\mathcal{V}\right)$, where $\mathcal{V}$ is a totally bounded uniformity fi{}ner than $\mathcal{U}$. If D$_{f}$ means for the set \[ \left\{ x\:\epsilon\: X\:\mid\: f\::(X,\mathcal{U})\longrightarrow\mathbb{C}\; is\; discontinuous\; at\; x\right\} , \] we prove that, if C(K) contains a dense subset E which contains no characteristic functions of singletons and such that, for each $f\epsilon E$ , there exists a fi{}nite subset F of D$_{f}$ with $D_{f}\backslash F$ discrete (in $\left(X,\mathcal{U}\right)$), then $\left(K,\widehat{\varphi,}\sum\right)$ inherits the properties of minimality and topological transitivity from $\left(X,\varphi,\sum\right)$. Several open questions are posed.
Archivio
http://hdl.handle.net/10077/4286
Diritti
open access
Soggetti
  • uniform completion

  • compactification

  • dynamical system

  • minimality

  • transitivity

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback