Logo del repository
  1. Home
 
Opzioni

Two-Dimensional Gauge Theories in BV Formalism and Gluing-Cutting

Iraso, Riccardo
2018-09-19
Abstract
The thesis is based on three publications. In the first paper we discuss the A-model as a gauge fixing of the Poisson Sigma Model with target a symplectic structure. We complete the comparison between Witten’s A-model and the PSM by showing how to recover the A-model hierarchy of observables in terms of the AKSZ observables. Moreover, we discuss the off-shell supersymmetry of the A-model as a residual BV symmetry of the gauge fixed PSM action. In the second publication we discuss observables of an equivariant extension of the A-model in the framework of the AKSZ construction. We introduce the A-model observables, a class of observables that are homotopically equivalent to the canonical AKSZ observables but are better behaved in the gauge fixing. We discuss them for two different choices of gauge fixing: the first one is conjectured to compute the correlators of the A-model with target the Marsden-Weinstein reduced space; in the second one we recover the topological Yang-Mills action coupled with A-model so that the A-model observables are closed under supersymmetry. In the third publication we recover the non-perturbative partition function of 2D Yang-Mills theory from the perturbative path-integral. To achieve this goal, we study the perturbative path-integral quantization for 2D Yang-Mills theory on surfaces with boundaries and corners in the Batalin-Vilkovisky formalism (or, more precisely, in its adaptation to the setting with boundaries, compatible with gluing and cutting – the BV-BFV formalism). We prove that cutting a surface (e.g. a closed one) into simple enough pieces – building blocks – choosing a convenient gauge-fixing on the pieces and assembling back the partition function on the surface, one recovers the known non-perturbative answers for 2D Yang-Mills theory.
Archivio
http://hdl.handle.net/20.500.11767/82482
Diritti
open access
Soggetti
  • Settore MAT/03 - Geom...

  • Settore MAT/07 - Fisi...

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback