Logo del repository
  1. Home
 
Opzioni

Virtual classes and virtual motives of Quot schemes on threefolds

Ricolfi, Andrea T.
2020
  • journal article

Periodico
ADVANCES IN MATHEMATICS
Abstract
For a simple, rigid vector bundle F on a Calabi-Yau 3-fold Y, we construct a symmetric obstruction theory on the Quot scheme Quot(Y) (F, n), and we solve the associated enumerative theory. We discuss the case of other 3-folds. Exploiting the critical structure on the local model Quot(A3)(O-circle plus r,n), we construct a virtual motive (in the sense of Behrend-Bryan-Szendroi) for Quot(Y) (F, n) for an arbitrary vector bundle F on a smooth 3-fold Y. We compute the associated motivic partition function. We obtain new examples of higher rank (motivic) Donaldson-Thomas invariants. (C) 2020 Elsevier Inc. All rights reserved.
DOI
10.1016/j.aim.2020.107182
WOS
WOS:000535128300019
Archivio
https://hdl.handle.net/20.500.11767/135070
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85084066134
https://arxiv.org/abs/1906.02557
Diritti
closed access
Soggetti
  • Virtual classes

  • (Motivic) Donaldson-T...

  • Quot schemes

  • Settore MAT/03 - Geom...

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback