Logo del repository
  1. Home
 
Opzioni

Thymosin β4 and prothymosin α promote cardiac regeneration post-ischaemic injury in mice

Gladka, Monika M
•
Johansen, Anne Katrine Z
•
van Kampen, Sebastiaan J
altro
van Rooij, Eva
2023
  • journal article

Periodico
CARDIOVASCULAR RESEARCH
Abstract
Aims The adult mammalian heart is a post-mitotic organ. Even in response to necrotic injuries, where regeneration would be essential to reinstate cardiac structure and function, only a minor percentage of cardiomyocytes undergo cytokinesis. The gene programme that promotes cell division within this population of cardiomyocytes is not fully understood. In this study, we aimed to determine the gene expression profile of proliferating adult cardiomyocytes in the mammalian heart after myocardial ischaemia, to identify factors to can promote cardiac regeneration. Methods and results Here, we demonstrate increased 5-ethynyl-2'deoxyuridine incorporation in cardiomyocytes 3 days post-myocardial infarction in mice. By applying multi-colour lineage tracing, we show that this is paralleled by clonal expansion of cardiomyocytes in the borderzone of the infarcted tissue. Bioinformatic analysis of single-cell RNA sequencing data from cardiomyocytes at 3 days post ischaemic injury revealed a distinct transcriptional profile in cardiomyocytes expressing cell cycle markers. Combinatorial overexpression of the enriched genes within this population in neonatal rat cardiomyocytes and mice at postnatal day 12 (P12) unveiled key genes that promoted increased cardiomyocyte proliferation. Therapeutic delivery of these gene cocktails into the myocardial wall after ischaemic injury demonstrated that a combination of thymosin beta 4 (TMSB4) and prothymosin alpha (PTMA) provide a permissive environment for cardiomyocyte proliferation and thereby attenuated cardiac dysfunction. Conclusion This study reveals the transcriptional profile of proliferating cardiomyocytes in the ischaemic heart and shows that overexpression of the two identified factors, TMSB4 and PTMA, can promote cardiac regeneration. This work indicates that in addition to activating cardiomyocyte proliferation, a supportive environment is a key for regeneration to occur.
DOI
10.1093/cvr/cvac155
WOS
WOS:000863960600001
Archivio
https://hdl.handle.net/11368/3051139
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85154599216
https://academic.oup.com/cardiovascres/article/119/3/802/6706608?login=true
https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/36125329/
Diritti
open access
license:creative commons
license uri:http://creativecommons.org/licenses/by-nc/4.0/
FVG url
https://arts.units.it/bitstream/11368/3051139/3/cvac155.pdf
Soggetti
  • Cardiac ischaemia

  • Cardiomyocyte

  • Gene therapy

  • Proliferation

  • Regeneration

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback