Logo del repository
  1. Home
 
Opzioni

Hydrodynamic capabilities of an SPH code incorporating an artificial conductivity term with a gravity-based signal velocity

Valdarnini, Riccardo
2012
  • journal article

Periodico
ASTRONOMY & ASTROPHYSICS
Abstract
This paper investigates the hydrodynamic performances of an smoothed particle hydrodynamics (SPH) code incorporating an artificial heat conductivity term in which the adopted signal velocity is applicable when gravity is present. To this end, we analyze results from simulations produced using a suite of standard hydrodynamical test problems. In accordance with previous findings, we show that the performances of SPH in describing the development of Kelvin-Helmholtz instabilities depend strongly on both the consistency of the initial condition set-up and the leading error in the momentum equation due to incomplete kernel sampling. In contrast, the presence of artificial conductivity does not significantly affect the results. An error and stability analysis shows that the quartic B-spline kernel (M-5) possesses very good stability properties and so we propose its use with a large neighbor number, between similar to 50 (2D) to similar to 100 (3D), to improve convergence in simulation results without being affected by the so-called clumping instability. Moreover, the results of the Sod shock tube demonstrate that to obtain simulation profiles in accord with the analytic solution, for simulations employing kernels with a non-zero first derivative at the origin, it is necessary to use a much larger number of neighbors than in the case of the M5 runs. Our SPH simulations of the blob test show that in order to achieve blob disruption it is necessary to include an artificial conductivity term. However, we find that in the regime of strong supersonic flows an appropriate limiting condition, which depends on the Prandtl number, must be imposed on the artificial conductivity SPH coefficients in order to avoid an unphysical amount of heat diffusion. Our results from hydrodynamic simulations that include self-gravity show profiles of hydrodynamic variables that are in much better agreement with those produced using mesh-based codes. In particular, the final levels of core entropies in cosmological simulations of galaxy clusters are consistent with those found using AMR codes. This demonstrates that the proposed diffusion scheme is capable of mimicking the process of entropy mixing that is produced during structure formation because of the diffusion caused by turbulence. Finally, the results of our Rayleigh-Taylor instability test demonstrate that in the regime of very subsonic flows the code still has several difficulties in the treatment of hydrodynamic instabilities. These problems are intrinsic to the way in which standard SPH gradients are calculated and not to the implementation of the artificial conductivity term. To overcome these difficulties, several numerical schemes have been proposed that, if coupled with the SPH implementation presented in this paper, could solve the issues that have recently been addressed in investigating SPH performances to model subsonic turbulence. © ESO, 2012.
DOI
10.1051/0004-6361/201219715
WOS
WOS:000310349100045
Archivio
http://hdl.handle.net/20.500.11767/11371
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84867013357
https://arxiv.org/abs/1207.6980
Diritti
open access
Soggetti
  • SMOOTHED-PARTICLE HYD...

  • KELVIN-HELMHOLTZ INST...

  • COSMOLOGICAL HYDRODYN...

  • Settore FIS/05 - Astr...

Scopus© citazioni
23
Data di acquisizione
Jun 2, 2022
Vedi dettagli
Web of Science© citazioni
23
Data di acquisizione
Mar 22, 2024
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback