Logo del repository
  1. Home
 
Opzioni

A reduced-order shifted boundary method for parametrized incompressible Navier–Stokes equations

Karatzas, Efthymios N.
•
Stabile, Giovanni
•
Nouveau, Leo
altro
Rozza, Gianluigi
2020
  • journal article

Periodico
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING
Abstract
We investigate a projection-based reduced order model of the steady incompressible Navier–Stokes equations for moderate Reynolds numbers. In particular, we construct an “embedded” reduced basis space, by applying proper orthogonal decomposition to the Shifted Boundary Method, a high-fidelity embedded method recently developed. We focus on the geometrical parametrization through level-set geometries, using a fixed Cartesian background geometry and the associated mesh. This approach avoids both remeshing and the development of a reference domain formulation, as typically done in fitted mesh finite element formulations. Two-dimensional computational examples for one and three parameter dimensions are presented to validate the convergence and the efficacy of the proposed approach. © 2020 Elsevier B.V.
DOI
10.1016/j.cma.2020.113273
WOS
WOS:000573042500005
Archivio
http://hdl.handle.net/20.500.11767/115084
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85087886522
https://www.sciencedirect.com/science/article/pii/S0045782520304588?via=ihub
https://arxiv.org/abs/1907.10549
Diritti
metadata only access
Soggetti
  • SBM

  • POD-Galerkin

  • "embedded" basi

  • Geometrical parametri...

  • Nonlinear

  • Navier-Stokes fluid f...

  • Settore MAT/08 - Anal...

  • Settore ICAR/08 - Sci...

Scopus© citazioni
7
Data di acquisizione
Jun 14, 2022
Vedi dettagli
Web of Science© citazioni
8
Data di acquisizione
Mar 28, 2024
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback