Logo del repository
  1. Home
 
Opzioni

Late Cenozoic to Present Kinematic of the North to Eastern Iran Orogen: Accommodating Opposite Sense of Fault Blocks Rotation

Rashidi A.
•
Shahpasandzadeh M.
•
Braitenberg C.
2022
  • journal article

Periodico
REMOTE SENSING
Abstract
The opposite-sense fault block rotation across the continental strike-slip faulting plays an important role in accommodating crustal deformation in the north of the East Iran orogen. This research constrains the post-Neogene kinematics of the NW-SE to E-W left-lateral transpressional zones at the northern termination of the N-S striking right-lateral Neh fault system in the East Iran orogen. Using two case studies, we analyzed the NW-SE Birjand splay and the E-W Shekarab transpression zone by analysis of satellite images, structural features, fault geometry and kinematics, GPS (Global Positioning System) velocities, fault- and earthquake-slip stress inversion, and paleomagnetic data. Our results show two distinctive regions of opposite-sense fault block rotations and with different rotation rates. As an asymmetric arc, the Birjand splay displays a transition from the prevailing N-S right lateral shear in the east to NW-SE left lateral transpression in the middle and E-W left lateral shear in the west. In the east, with clockwise fault block rotation, the N-S right lateral faults and the NW-SE oblique left-lateral reverse faults constitute push-ups through the restraining fault bends. In the west, with counterclockwise fault block rotation, the Shekarab transpression zone is associated with the duplex, pop-up, and shear folds. Our suggested kinematic model reveals that the N-S right-lateral shear is consumed on the left-lateral transpressional zones through the vertical axis fault block rotation. This led to an E-W shortening and N-S along-strike lengthening in the East Iran orogen. This research improves our understanding of how opposite fault block rotations accommodate India- and Eurasia-Arabia convergence in the north of the East Iran orogen. The suggested model has implications in the kinematic evolution of intra-plate strike-slip faulting through continental collision tectonics.
DOI
10.3390/rs14164048
WOS
WOS:000845357500001
Archivio
https://hdl.handle.net/11368/3034638
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85137828889
https://www.mdpi.com/2072-4292/14/16/4048
Diritti
open access
license:creative commons
license uri:http://creativecommons.org/licenses/by/4.0/
FVG url
https://arts.units.it/bitstream/11368/3034638/3/remotesensing-14-04048.pdf
Soggetti
  • block rotation

  • Eastern Iranian oroge...

  • fault kinematic

  • fault splay

  • GPS

  • transpression

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback