MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES
Abstract
In this paper, we investigate spectral stability of traveling wave solutions to 1D quantum hydrodynamics system with nonlinear viscosity in the (ρ,u), that is, density and velocity, variables. We derive a sufficient condition for the stability of the essential spectrum and we estimate the maximum modulus of eigenvalues with non-negative real part. In addition, we present numerical computations of the Evans function in sufficiently large domain of the unstable half-plane and show numerically that its winding number is (approximately) zero, thus giving a numerical evidence of point spectrum stability.