Logo del repository
  1. Home
 
Opzioni

An elliptic problem with arbitrarily small positive solutions

OMARI, PIERPAOLO
•
ZANOLIN F.
2000
  • journal article

Periodico
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS
Abstract
We show that for each $\lambda > 0$, the problem $-\Delta_p u = \lambda f(u)$ in $Omega$, $u = 0$ on $\partial \Omega$ has a sequence of positive solutions $(u_n)_n$ with $\max_{\bar\Omega} u_n$ decreasing to zero. We assume that $\displaystyle{\liminf_{s\to0^+}\frac{F(s)}{s^p} = 0}$ and that $\displaystyle{\limsup_{s\to 0^+}\frac{F(s)}{s^p} = +\infty}$, where $F'=f$. We stress that no condition on the sign of $f$ is imposed.
Archivio
http://hdl.handle.net/11368/2311256
http://www.emis.de/journals/EJDE/
Diritti
metadata only access
Soggetti
  • Quasilinear elliptic ...

  • positive solution

  • upper and lower solut...

  • time-mapping estimate...

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback