Logo del repository
  1. Home
 
Opzioni

Feasibility Investigation on Several Reinforcement Learning Techniques to Improve the Performance of the FERMI Free-Electron Laser

BRUCHON, NIKY
  • doctoral thesis

Abstract
The research carried out in particle accelerator facilities does not concern only particle and condensed matter physics, although these are the main topics covered in the field. Indeed, since a particle accelerator is composed of many different sub-systems, its proper functioning depends both on each of these parts and their interconnection. It follows that the study, implementation, and improvement of the various sub-systems are fundamental points of investigation too. In particular, an interesting aspect for the automation engineering community is the control of such systems that usually are complex, large, noise-affected, and non-linear. The doctoral project fits into this scope, investigating the introduction of new methods to automatically improve the performance of a specific type of particle accelerators: seeded free-electron lasers. The optimization of such systems is a challenging task, already faced in years by many different approaches in order to find and attain an optimal working point, keeping it optimally tuned despite drift or disturbances. Despite the good results achieved, better ones are always sought for. For this reason, several methods belonging to reinforcement learning, an area of machine learning that is attracting more and more attention in the scientific field, have been applied on FERMI, the free-electron laser facility at Elettra Sincrotrone Trieste. The research activity has been carried out by applying both model-free and model-based techniques belonging to reinforcement learning. Satisfactory preliminary results have been obtained, that present the first step toward a new fully automatic procedure for the alignment of the seed laser to the electron beam. In the meantime, at the Conseil Européen pour la Recherche Nucléaire, CERN, a similar investigation was ongoing. In the last year of the doctoral course, a collaboration to share the knowledge on the topic took place. Some of the results collected on the largest particle physics laboratory in the world are presented in the doctoral dissertation.
Archivio
http://hdl.handle.net/11368/2982117
Diritti
open access
FVG url
https://arts.units.it/bitstream/11368/2982117/2/PhD_Thesis_Final_NikyBruchon.pdf
Soggetti
  • reinforcement

  • learning

  • free-electron laser

  • optimization

  • control-system

  • control-system

  • Settore ING-INF/04 - ...

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback