Logo del repository
  1. Home
 
Opzioni

POSITIVE RADIAL SOLUTIONS OF THE DIRICHLET PROBLEM FOR THE MINKOWSKI-CURVATURE EQUATION IN A BALL

Coelho, I
•
Corsato, C
•
Rivetti, S
2014
  • journal article

Periodico
TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS
Abstract
We study the existence and multiplicity of positive radial solutions of the Dirichlet problem for the Minkowski-curvature equation $$ \begin{cases} \displaystyle -\text{div}\bigg(\frac{\nabla v}{\sqrt{1-|\nabla v|^2}}\bigg)=f(|x|,v) & \text{in } B_R,\\v=0 & \text{on } \partial B_R, \end{cases} $$ where $B_R$ is a ball in $\mathbb{R}^N$ ($N\ge 2$). According to the behaviour of $f=f(r,s)$ near $s=0$, we prove the existence of either one, two or three positive solutions. All results are obtained by reduction to an equivalent non-singular one-dimensional problem, to which variational methods can be applied in a standard way.
DOI
10.12775/TMNA.2014.034
WOS
WOS:000344042300003
Archivio
http://hdl.handle.net/11368/2921638
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84908032030
Diritti
metadata only access
Soggetti
  • Quasilinear elliptic ...

  • Minkowski-curvature

  • Dirichlet boundary co...

  • radial solution

  • positive solution

  • existence

  • multiplicity

  • variational methods

Scopus© citazioni
39
Data di acquisizione
Jun 7, 2022
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback