Logo del repository
  1. Home
 
Opzioni

Towards explainable data-to-text generation

Palu A. D.
•
Dovier A.
•
Formisano A.
2023
  • conference object

Abstract
In recent years there has been a renewed burst of interest in systems able to textually summarize data, producing natural language text as a description of input data series. Many of the recently proposed approaches to solve the data-to-text task are based on Machine Learning (ML) and ultimately rely on Deep Learning (DL) techniques. This technological choice often prevents the system from enjoying explainability properties. In this paper we outline our ongoing research and present a framework that is ML/DL free and is conceived to be compliant with xAI requirements. In particular we design ASP/Python programs that enable explicit control of the abstraction process, descriptions' accuracy and relevance handling, and amount of synthesis. We provide a critical analysis of the xAI features that should be implemented and a working proof of concept that addresses crucial aspects in the abstraction of data. In particular we discuss: how to model and output the abstraction accuracy of a concept w.r.t. data; how to identify what to say with controlled synthesis level: i.e., the key descriptive elements to be addressed in the data; how to represent abstracted information by means of visual annotation to charts. The main advantages of such approach are a trustworthy and reliable description, a transparent methodology, logically provable output, and measured accuracy that can control natural language modulation of descriptions.
Archivio
https://hdl.handle.net/11390/1256884
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85164577789
https://ricerca.unityfvg.it/handle/11390/1256884
Diritti
open access
Soggetti
  • Answer Set Programmin...

  • Data-to-text

  • Explainable AI

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback