Logo del repository
  1. Home
 
Opzioni

An asymmetric noncommutative torus

Dabrowski, Ludwik
•
SITARZ, Andrzej Wojciech
2015
  • journal article

Periodico
SYMMETRY, INTEGRABILITY AND GEOMETRY: METHODS AND APPLICATIONS
Abstract
We introduce a family of spectral triples that describe the curved noncommutative two-torus. The relevant family of new Dirac operators is given by rescaling one of two terms in the flat Dirac operator. We compute the dressed scalar curvature and show that the Gauss-Bonnet theorem holds (which is not covered by the general result of Connes and Moscovici).
DOI
10.3842/SIGMA.2015.075
WOS
WOS:000362315600001
Archivio
http://hdl.handle.net/20.500.11767/11393
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84943230247
https://arxiv.org/abs/1406.4645
http://www.emis.de/journals/SIGMA/2015/075/
Diritti
closed access
Soggetti
  • noncommutative geomet...

  • Gauss-Bonnet

  • spectral triple

  • Settore MAT/07 - Fisi...

Scopus© citazioni
28
Data di acquisizione
Jun 7, 2022
Vedi dettagli
Web of Science© citazioni
21
Data di acquisizione
Mar 14, 2024
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback