Logo del repository
  1. Home
 
Opzioni

On the Euler-Lagrange equation for a variational problem: the general case II

Bianchini, S.
•
Gloyer, Matteo
2010
  • journal article

Periodico
MATHEMATISCHE ZEITSCHRIFT
Abstract
In this paper we study the existence of a solution in Lloc() to the Euler–Lagrange equation for the variational problem infu+W01()(ID(u)+g(u))dx(01) with D convex closed subset of Rn with non empty interior. By means of a disintegration theorem, we next show that the Euler–Lagrange equation can be reduced to an ODE along characteristics, and we deduce that there exists a solution to Euler–Lagrange different from 0 a.e. and satisfies a uniqueness property. These results prove a conjecture on the existence of variations on vector fields stated in Bertone and Cellina (On the existence of variations).
DOI
10.1007/s00209-009-0547-2
WOS
WOS:000278693500009
Archivio
http://hdl.handle.net/20.500.11767/16217
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-77953727627
http://preprints.sissa.it/xmlui/handle/1963/2551
Diritti
open access
Soggetti
  • Extended valued funct...

  • Euler-Lagrange equati...

  • Hamilton-Jacobi equat...

  • Disintegration of a m...

  • Settore MAT/05 - Anal...

Scopus© citazioni
12
Data di acquisizione
Jun 2, 2022
Vedi dettagli
Web of Science© citazioni
9
Data di acquisizione
Mar 28, 2024
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback