Logo del repository
  1. Home
 
Opzioni

Advantages of using uav digital photogrammetry in the study of slow-moving coastal landslides

Devoto S.
•
Macovaz V.
•
Mantovani M.
altro
Furlani S.
2020
  • journal article

Periodico
REMOTE SENSING
Abstract
The aim of this study is to demonstrate the advantages of using micro drones in the study of large slow-moving landslides, which are widespread along the northwestern coast of Malta. In particular, attention was given to the inventory and analysis of gravity-induced joints and megaclast deposits at four study sites selected due to the presence of remarkable examples of lateral spreads evolving into block slides. The research was carried out by means of Google Earth (GE) image analysis and uncrewed aerial vehicle digital photogrammetry (UAV-DP). UAV-DP outputs enabled the identification and characterization of tens of persistent joints (locally exceeding 150 m) and permitted the size categorization of thousands of blocks. With reference to gravity-induced joints, a favorable agreement was found between existing datasets (mainly based on the integration of GE analysis and field survey) and UAV-DP outputs in terms of the identification of joints and their persistence. Conversely, the use of the UAV-DP technique showed significant advantages in terms of joint aperture determination (even exceeding 1 m) and distribution setting. Regarding the extensive megaclast deposits, UAV-DP enabled the identification of 8943 individuals which, compared with the 5059 individuals identified by GE analysis, showed an increase in the total population of 76%. This is related to the high accuracy of DP-derived orthomosaics and 3D models, which are particularly useful for identifying detached blocks. The inexpensive technique used in this research highlights its potential for being extended to other rocky coastal areas affected by slowmoving landslides.
DOI
10.3390/rs12213566
WOS
WOS:000589184400001
Archivio
http://hdl.handle.net/11368/2981397
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85094617269
https://www.mdpi.com/2073-4441/12/8/2173
Diritti
open access
license:creative commons
license uri:http://creativecommons.org/licenses/by/4.0/
FVG url
https://arts.units.it/bitstream/11368/2981397/2/remotesensing-12-03566-v2(1).pdf
Soggetti
  • Block slide

  • Coastal landslide

  • Lateral spread

  • Malta

  • UAV-DP

Web of Science© citazioni
49
Data di acquisizione
Mar 28, 2024
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback