Logo del repository
  1. Home
 
Opzioni

Generation of rhythmic patterns of activity by ventral interneurones in rat organotypic spinal slice culture

Ballerini, Laura
•
GALANTE M
•
GRANDOLFO M
•
Nistri, Andrea
1999
  • journal article

Periodico
THE JOURNAL OF PHYSIOLOGY
Abstract
1. In the presence of certain excitatory substances the rat isolated spinal cord generates rhythmic oscillations believed to be an in-built locomotor programme (fictive locomotion). However, it is unknown whether a long-term culture of the same tissue can express rhythmic activity. Such a simplified model system would provide useful data on the minimal circuitry involved and the cellular mechanisms mediating this phenomenon. For this purpose we performed patch clamp recording (under whole-cell voltage or current clamp conditions) from visually identified ventral horn interneurones of an organotypic slice culture of the rat spinal cord. 2. Ventral horn interneurones expressed rhythmic bursting when the extracellular [K+] was raised from 4 to 6-7 mM. Under voltage clamp this activity consisted of composite synaptic currents grouped into bursts lasting 0.9 +/- 0.5 s (2.8 +/- 1.5 s period) and was generated at network level as it was blocked by tetrodotoxin or low-Ca2+-high-Mg2+ solution and its periodicity was unchanged at different potential levels. 3. In current clamp mode bursting was usually observed as episodes comprising early depolarizing potentials followed by hyperpolarizing events with tight temporal patterning. Bursting was fully suppressed by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and reduced in amplitude and duration by N-methyl-D-aspartate (NMDA) receptor antagonism without change in periodicity. Extracellular field recording showed bursting activity over a wide area of the ventral horn. 4. Regular, rhythmic activity similar to that induced by K+ also appeared spontaneously in Mg2+-free solution. The much slower rhythmic pattern induced by strychnine and bicuculline was also accelerated by high-K+ solution. 5. The fast and regular rhythmic activity of interneurones in the spinal organotypic culture is a novel observation which suggests that the oversimplified circuit present in this culture is a useful model for investigating spinal rhythmic activity.
DOI
10.1111/j.1469-7793.1999.0459t.x
WOS
WOS:000081036000014
Archivio
http://hdl.handle.net/20.500.11767/17016
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-0033153231
Diritti
closed access
Soggetti
  • central pattern gener...

  • spinal interneuron

  • rhythmic activity

  • organotypic spinal cu...

  • electrophysiology

  • Settore BIO/09 - Fisi...

Scopus© citazioni
52
Data di acquisizione
Jun 14, 2022
Vedi dettagli
Web of Science© citazioni
55
Data di acquisizione
Mar 10, 2024
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback