Logo del repository
  1. Home
 
Opzioni

Tropical Jucys covers

Anas Hahn M
•
Lewanski D
2022
  • journal article

Periodico
MATHEMATISCHE ZEITSCHRIFT
Abstract
We study monotone and strictly monotone Hurwitz numbers from a bosonic Fock space perspective. This yields to an interpretation in terms of tropical geometry involving local multiplicities given by Gromov-Witten invariants. Furthermore, this enables us to prove that a main result of Cavalieri-Johnson-Markwig-Ranganathan is actually equivalent to the Gromov-Witten/Hurwitz correspondence by Okounkov-Pandharipande for the equivariant Riemann sphere.
DOI
10.1007/s00209-021-02940-2
WOS
WOS:000750382900002
Archivio
https://hdl.handle.net/11368/3047179
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85123937796
https://link.springer.com/article/10.1007/s00209-021-02940-2
Diritti
open access
license:creative commons
license uri:http://creativecommons.org/licenses/by/4.0/
FVG url
https://arts.units.it/bitstream/11368/3047179/3/s00209-021-02940-2.pdf
Soggetti
  • Gromov-Witten

  • Hurwitz

  • Algebraic geometry

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback