Logo del repository
  1. Home
 
Opzioni

Symplectic isotopy conjecture for elliptic ruled surfaces.

Smirnov, Gleb
2018-07-05
Abstract
Three problems are studied in this thesis; the first problem is about four-dimensional symplectic manifolds. It was formulated by McDuff and Salamon in the very latest edition of their famous book. This problem is to prove that the Torelli part of the symplectic mapping class group of a geometrically ruled surface is trivial. In Section 0 a partial solution for this problem is given. The second problem is to compute the symplectic mapping class group of the one-point blow-up of the direct product of the 2-sphere and the 2-torus. A partial solution to this problem is given in Section 3, see also my joint work with Shevchishin. Namely, it is proved that the abelianization of the corresponding symplectic mapping class group is of rank 2. The third problem has nothing to do with symplectic geometry, it is purely topological. This problem studies necessary and sufficient conditions for the existence of Lorentzian cobordisms between closed smooth manifolds of arbitrary dimension such that the structure group of the cobordism is the spin Lorentzian group. This extends a result of Gibbons-Hawking on Sl(2, C)-Lorentzian cobordisms between 3-manifolds and results of Reinhart and Sorkin on the existence of Lorentzian cobordisms. The proof is explained very carefully in my recent joint work with Rafael Torres. Here the explanation tends to be briefly.
Archivio
http://hdl.handle.net/20.500.11767/77842
Diritti
open access
Soggetti
  • symplectomorphism gro...

  • pseudoholomorphic cur...

  • ruled surface

  • spin structures

  • Settore MAT/03 - Geom...

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback