PROCEEDINGS - ROYAL SOCIETY. MATHEMATICAL, PHYSICAL AND ENGINEERING SCIENCES
Abstract
We investigate the geometry of classical Hamiltonian systems immersed in a magnetic field in three-dimensional (3D) Riemannian configuration spaces. We prove that these systems admit non-trivial symplectic-Haantjes manifolds, which are symplectic manifolds endowed with an algebra of Haantjes (1,1)-tensors. These geometric structures allow us to determine separation variables for known systems algorithmically. In addition, the underlying Stäckel geometry is used to construct new families of integrable Hamiltonian models immersed in a magnetic field.