Logo del repository
  1. Home
 
Opzioni

TurboEELS - A code for the simulation of the electron energy loss and inelastic X-ray scattering spectra using the Liouville-Lanczos approach to time-dependent density-functional perturbation theory

Timrov, Iurii
•
Vast, Nathalie
•
Gebauer, Ralph
•
Baroni, Stefano
2015
  • journal article

Periodico
COMPUTER PHYSICS COMMUNICATIONS
Abstract
We introduce turboEELS, an implementation of the Liouville-Lanczos approach to linearized time-dependent density-functional theory, designed to simulate electron energy loss and inelastic X-ray scattering spectra in periodic solids. turboEELS is open-source software distributed under the terms of the GPL as a component of Quantum ESPRESSO. As with other components, turboEELS is optimized to run on a variety of different platforms, from laptops to massively parallel architectures, using native mathematical libraries (LAPACK and FFTW) and a hierarchy of custom parallelization layers built on top of MPI. Program summary Program title: turboEELS Catalogue identifier: AEXB-v1-0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEXB-v1-0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License V 2.0 No. of lines in distributed program, including test data, etc.: 1371515 No. of bytes in distributed program, including test data, etc.: 37355712 Distribution format: tar.gz Programming language: Fortran 95. Computer: Any computer architecture. Operating system: GNU/Linux, AIX, IRIX, Mac OS X, and other UNIX-like OS's. Classification: 7.2. External routines: turboEELS is a tightly integrated component of the Quantum ESPRESSO distribution and requires the standard libraries linked by it: BLAS, LAPACK, FFTW, MPI. Nature of problem: Calculation of the electron energy loss and inelastic X-ray scattering spectra of periodic solids. Solution method: The charge-density susceptibility of a periodic system is expressed in terms of the resolvent of its Liouvillian superoperator within time-dependent density functional perturbation theory. It is calculated using non-Hermitian or pseudo-Hermitian variants of the Lanczos recursion scheme, whose implementation does not require the calculation of any virtual states. Pseudopotentials (both norm-conserving and ultrasoft) are used in conjunction with plane-wave basis sets and periodic boundary conditions. Relativistic effects (spin-orbit coupling) can be included in calculations. Restrictions: Linear-response regime. Adiabatic exchange-correlation kernels only. No hybrid functionals. Collinear spin-polarized formalism is not supported, only non-collinear spin-polarized case can be used. Spin-orbit coupling cannot be used with ultrasoft pseudopotentials. No magnetism. No Hubbard U formalism. No PAW pseudopotentials. Unusual features: No virtual orbitals are used, nor even calculated. A single Lanczos recursion gives access to the whole spectrum at fixed transferred momentum. Additional comments: The distribution file of this program can be downloaded from the Quantum ESPRESSO website: http://www.quantum-espresso.org/, and the development version of this program can be downloaded via SVN from the QE-forge website: http://qe-forge.org/gf/project/q-e/. !!!!! The distribution file for this program is over 37 Mbytes and therefore is not delivered directly when download or Email is requested. Instead a html file giving details of how the program can be obtained is sent. !!!!! Running time: From a few minutes for elemental bulk systems with a few atoms in the primitive unit cell on serial machines up to many hours on multiple processors for complex systems (e.g.; surfaces with high Miller indices) with dozens or hundreds of atoms.
DOI
10.1016/j.cpc.2015.05.021
WOS
WOS:000362602900044
Archivio
http://hdl.handle.net/20.500.11767/70087
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84942192574
https://www.sciencedirect.com/science/article/pii/S0010465515002015?via%3Dihub
Diritti
closed access
Soggetti
  • Electron energy loss ...

  • Inelastic X-ray scatt...

  • Linear response

  • Liouville-Lanczos app...

  • Quantum ESPRESSO

  • Time-dependent densit...

  • Hardware and Architec...

  • Physics and Astronomy...

  • Settore FIS/02 - Fisi...

Scopus© citazioni
23
Data di acquisizione
Jun 14, 2022
Vedi dettagli
Web of Science© citazioni
40
Data di acquisizione
Mar 24, 2024
Visualizzazioni
9
Data di acquisizione
Jun 8, 2022
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback