Logo del repository
  1. Home
 
Opzioni

Gromov-Hausdorff convergence of discrete transportation metrics

Gigli, Nicola
•
Mass, J.
2013
  • journal article

Periodico
SIAM JOURNAL ON MATHEMATICAL ANALYSIS
Abstract
This paper continues the investigation of discrete transportation distances initiated in [13] and further studied in [8] (see also [5] and [14]). We prove that the discrete transportation metrics on the d-dimensional discrete torus with mesh size 1/N converge, when N goes to infinity to the standard 2-Wasserstein distance on the continuous torus. This is the first result of a passage to the limit from a discrete transportation problem to a continuous one, and proves that the theory built by the second author is fully compatible with the continuous case. © 2013 Society for Industrial and Applied Mathematics.
DOI
10.1137/120886315
WOS
WOS:000318405900018
Archivio
http://hdl.handle.net/20.500.11767/14218
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84879761928
https://arxiv.org/abs/1207.6501
http://cdsads.u-strasbg.fr/abs/2012arXiv1207.6501G
Diritti
open access
Soggetti
  • optimal transport

  • discrete analysi

  • Discrete transportati...

  • Gromov-hausdorf conve...

  • Wasserstein metric

  • Settore MAT/05 - Anal...

Scopus© citazioni
23
Data di acquisizione
Jun 14, 2022
Vedi dettagli
Web of Science© citazioni
26
Data di acquisizione
Mar 18, 2024
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback