Logo del repository
  1. Home
 
Opzioni

Antibacterial Electrospun Polycaprolactone Membranes Coated with Polysaccharides and Silver Nanoparticles for Guided Bone and Tissue Regeneration

Porrelli, Davide
•
Mardirossian, Mario
•
Musciacchio, Luigi
altro
Turco, Gianluca
2021
  • journal article

Periodico
ACS APPLIED MATERIALS & INTERFACES
Abstract
Electrospun polycaprolactone (PCL) membranes have been widely explored in the literature as a solution for several applications in tissue engineering and regenerative medicine. PCL hydrophobicity and its lack of bioactivity drastically limit its use in the medical field. To overcome these drawbacks, many promising strategies have been developed and proposed in the literature. In order to increase the bioactivity of electrospun PCL membranes designed for guided bone and tissue regeneration purposes, in the present work, the membranes were functionalized with a coating of bioactive lactose-modified chitosan (CTL). Since CTL can be used for the synthesis and stabilization of silver nanoparticles, a coating of this compound was employed here to provide antibacterial properties to the membranes. Scanning electron microscopy imaging revealed that the electrospinning process adopted here allowed us to obtain membranes with homogeneous fibers and without defects. Also, PCL membranes retained their mechanical properties after several weeks of aging in simulated body fluid, representing a valid support for cell growth and tissue development. CTL adsorption on membranes was investigated by fluorescence microscopy using fluorescein-labeled CTL, resulting in a homogeneous and slow release over time. Inductively coupled plasma–mass spectrometry was used to analyze the release of silver, which was shown to be stably bonded to the CTL coating and to be slowly released over time. The CTL coating improved MG63 osteoblast adhesion and proliferation on membranes. On the other hand, the presence of silver nanoparticles discouraged biofilm formation by Pseudomonas aeruginosa and Staphylococcus aureus without being cytotoxic. Overall, the stability and the biological and antibacterial properties make these membranes a valid and versatile material for applications in guided tissue regeneration and in other biomedical fields like wound healing.
DOI
10.1021/acsami.1c01016
WOS
WOS:000643578300010
Archivio
http://hdl.handle.net/11368/2986211
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85104924871
https://pubs.acs.org/doi/10.1021/acsami.1c01016
Diritti
open access
license:digital rights management non definito
license:creative commons
license uri:http://creativecommons.org/licenses/by-nc-nd/4.0/
FVG url
https://arts.units.it/request-item?handle=11368/2986211
Soggetti
  • silver nanoparticle

  • bioactivity

  • electrospinning

  • antibacterial

  • tissue engineering

Web of Science© citazioni
48
Data di acquisizione
Mar 23, 2024
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback