Logo del repository
  1. Home
 
Opzioni

TASP: Topic-based abstractive summarization of Facebook text posts

Benedetto, Irene
•
La Quatra, Moreno
•
Cagliero, Luca
altro
Trevisan, Martino
2024
  • journal article

Periodico
EXPERT SYSTEMS WITH APPLICATIONS
Abstract
Summarizing trending topics in large collections of Facebook posts is particularly relevant to profile social user activities and interests. However, automatically generating these summaries poses significant challenges due to the high heterogeneity of the input data, the limited fluency of extractive summaries, and the absence of abstractive summarization methods capable of handling multiple posts simultaneously. Existing abstractive models are either not suited to handle large post collections or disregard topic-level text relations. In this work, we present TASP, a novel tool for trending topic detection and summarization from English-written Facebook posts. It trains abstractive summarization models on multi-post collections by leveraging a shortlist of authoritative posts published by renowned newspapers. At inference time, TASP first creates clusters of semantically similar social posts, each one representing a distinct topic, using pre-trained transformer-based language models. Then, it generates abstractive summaries of the clusters for which authoritative information is missing. To the best of our knowledge, TASP is the first available tool suited to abstractive multi-post summarization. We test our approach on a large-scale dataset of real Facebook posts. The results show (1) The higher effectiveness of transformer-based approaches in generating topic-specific post clusters compared to traditional methods. (2) The importance of attending long pieces of text in multi-post abstractive summary generation.
DOI
10.1016/j.eswa.2024.124567
WOS
WOS:001266230200001
Archivio
https://hdl.handle.net/11368/3079938
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85197437466
https://www.sciencedirect.com/science/article/pii/S0957417424014349
Diritti
open access
license:copyright editore
license:creative commons
license uri:iris.pri02
license uri:http://creativecommons.org/licenses/by-nc-nd/4.0/
FVG url
https://arts.units.it/request-item?handle=11368/3079938
Soggetti
  • Social network mining...

  • Abstractive summariza...

  • Natural language unde...

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback