Logo del repository
  1. Home
 
Opzioni

New insights on binary black hole formation channels after GWTC-2: Young star clusters versus isolated binaries

Bouffanais Y.
•
Mapelli M.
•
Santoliquido F.
altro
Iorio G.
2021
  • journal article

Periodico
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Abstract
With the recent release of the Second Gravitational Wave Transient Catalog (GWTC-2), which introduced dozens of new detections, we are at a turning point of gravitational wave astronomy, as we are now able to directly infer constraints on the astrophysical population of compact objects. Here, we tackle the burning issue of understanding the origin of binary black hole (BBH) mergers. To this effect, we make use of state-of-the-art population synthesis and N-body simulations, to represent two distinct formation channels: BBHs formed in the field (isolated channel) and in young star clusters (dynamical channel). We then use a Bayesian hierarchical approach to infer the distribution of the mixing fraction f, with f = 0 (f = 1) in the pure dynamical (isolated) channel. We explore the effects of additional hyperparameters of the model, such as the spread in metallicity σZ and the parameter σsp, describing the distribution of spin magnitudes. We find that the dynamical model is slightly favoured with a median value of f = 0.26, when σsp = 0.1 and σZ = 0.4. Models with higher spin magnitudes tend to strongly favour dynamically formed BBHs (f ≤ 0.1 if σsp = 0.3). Furthermore, we show that hyperparameters controlling the rates of the model, such as σZ, have a large impact on the inference of the mixing fraction, which rises from 0.18 to 0.43 when we increase σZ from 0.2 to 0.6, for a fixed value of σsp = 0.1. Finally, our current set of observations is better described by a combination of both formation channels, as a pure dynamical scenario is excluded at the $99{{\ \rm per\ cent}}$ credible interval, except when the spin magnitude is high.
DOI
10.1093/mnras/stab2438
WOS
WOS:000702151300037
Archivio
https://hdl.handle.net/20.500.11767/135610
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85117204133
https://arxiv.org/abs/2102.12495
https://ricerca.unityfvg.it/handle/20.500.11767/135610
Diritti
metadata only access
Soggetti
  • black hole physics

  • gravitational waves

  • methods: numerical

  • methods: statistical

  • Settore FIS/05 - Astr...

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback