Logo del repository
  1. Home
 
Opzioni

Recent Results from the PVLAS Experiment on the Magnetized Vacuum

CANTATORE, GIOVANNI
•
DI DOMENICO G
•
ZAVATTINI G
altro
ZAVATTINI E.
2008
  • book part

Abstract
The vacuum element can be used as a target in a photon-photon collider in order to study its properties. Some of these properties are predicted by Quantum Electrodynamics, while additional and unexpected properties might be linked to the existence of yet undiscovered axion-like particles (ALPs) interacting with two photons. In this low energy case (1–2 texteV), real photons from a polarized laser beam are scattered off virtual photons provided by a magnetic field. Information on the scattering processes can be obtained by measuring changes in the polarization state of the probe photons. In the PVLAS (Polarizzazione del Vuoto con LASer) experiment, running at the Legnaro Laboratory of the Istituto Nazionale di Fisica Nucleare (INFN), near Padova, Italy, a linearly polarized laser beam is sent through a 5 textT strong magnetic field in vacuum, where it is reflected back and forth, by means of a Fabry-P’erot resonator, ∼ 50,000 times over a distance of 1 textm. A heterodyne ellipsometer allows the simultaneous detection of a birefringence and a rotation of the polarization plane. The sensitivity of the instrument allows the detection of rotation or of ellipticity angles of about 10-9 textrad, in an hour of data taking. The measurement technique employed by PVLAS will be illustrated, and recent results on polarization effects due to the magnetized vacuum will be presented in this chapter. The interpretation of these effects in terms of the production of ALPs will also be discussed. Finally, the realization of a photon-regeneration type experiment will be briefly illustrated.
DOI
10.1007/978-3-540-73518-2_9
Archivio
http://hdl.handle.net/11368/1717326
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-37449034022
http://www.springerlink.com/content/g83827n77186313u/
Diritti
metadata only access
Soggetti
  • axion

  • magnetic birefringenc...

Scopus© citazioni
16
Data di acquisizione
Jun 14, 2022
Vedi dettagli
Visualizzazioni
2
Data di acquisizione
Jun 8, 2022
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback