We prove a lower bound on the number of the convex components of a compact set with non-empty interior in Double-struck capital R-n for all n >= 2 . Our result generalizes and improves the inequalities previously obtained in [M. Carozza, F. Giannetti, F. Leonetti and A. Passarelli di Napoli, Convex components, Commun. Contemp. Math. 21 (2019), no.6, Article ID 1850036] and [M. La Civita and F. Leonetti, Convex components of a set and the measure of its boundary, Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 56 2008/09, 71-78].